Solution:

Let $T: P_n \to P_n$ be the transformation defined by $T(p(x)) = x^n p\left(\frac{1}{x}\right)$.

i) Show that T is linear.

Closure under Addition. Let $f(x), g(x) \in P_n$ and consider

$$T(f(x) + g(x)) = T((f+g)(x))$$
$$= x^{n}(f+g)\left(\frac{1}{x}\right)$$
$$= x^{n}\left(f\left(\frac{1}{x}\right) + g\left(\frac{1}{x}\right)\right)$$
$$= x^{n}f\left(\frac{1}{x}\right) + x^{n}g\left(\frac{1}{x}\right)$$
$$= T(f(x)) + T(g(x))$$

which shows that T is closed under addition.

Closure under Scalar Multiplication. Let $f(x) \in P_n$ and $c \in \mathbb{R}$. Consider

$$T(c \cdot f(x)) = T((cf)(x))$$
$$= x^{n}(cf)\left(\frac{1}{x}\right)$$
$$= x^{n}\left(c \cdot f\left(\frac{1}{x}\right)\right)$$
$$= c\left(x^{n}f\left(\frac{1}{x}\right)\right)$$
$$= c \cdot T(f(x))$$

which shows that T is closed under scalar multiplication. Therefore, T is a linear transformation, as required.

ii) Show that T is an isomorphism.

Since T is linear and the dimensions of both the domain and codomain are n + 1, it follows that T is an isomorphism if and only if T is one-to-one or onto.

We will show that T is onto. Let $p(x) \in P_n$. Then $p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$ for some constants $a_0, a_1, \dots, a_n \in \mathbb{R}$. Pick $q(x) = a_0 x^n + a_1 x^{n-1} + \dots + a_{n-1} x + a_n$. Notice that $q(x) \in P_n$. Now observe that

$$T(q(x)) = x^{n} \cdot q\left(\frac{1}{x}\right)$$

$$= x^{n} \cdot \left(a_{0} \cdot \left(\frac{1}{x}\right)^{n} + a_{1} \cdot \left(\frac{1}{x}\right)^{n-1} + \dots + a_{n-1} \cdot \left(\frac{1}{x}\right) + a_{n}\right)$$

$$= x^{n} \cdot \left(a_{0} \cdot \left(\frac{1}{x^{n}}\right) + a_{1} \cdot \left(\frac{1}{x^{n-1}}\right) + \dots + a_{n-1} \cdot \left(\frac{1}{x}\right) + a_{n}\right)$$

$$= a_{0} \cdot \left(\frac{x^{n}}{x^{n}}\right) + a_{1} \cdot \left(\frac{x^{n}}{x^{n-1}}\right) + \dots + a_{n-1} \cdot \left(\frac{x^{n}}{x}\right) + a_{n} \cdot x^{n}$$

$$= a_{0} + a_{1}x + \dots + a_{n-1}x^{n-1} + a_{n} \cdot x^{n}$$

$$= p(x)$$

which shows that p(x) has a preimage. Since p(x) was arbitrary, it follows that T is onto. Therefore, T is an isomorphism as required.