Solution:

Note: Before we proceed to the solution, let us define r_1, r_2, r_3 to be three rods lined up in a row with r_2 in the centre. Let d_1, d_2, \ldots, d_n be n disks in increasing size order. This means d_1 is the smallest disk and d_n is the largest disk. Let these disks start off on r_1 . The bottom disk on r_1 is d_n and the other disks are placed on top d_n in decreasing order (this means d_1 is at the top of r_1).

Claim: If n is odd, then to complete the Tower of Hanoi game in $2ⁿ - 1$ moves, the first move should be to move d_1 to r_3 . If n is even, then to complete the Tower of Hanoi game in $2^n - 1$ moves, the first move should be to move d_1 to r_2 .

Proof (Odd). Let n be an odd positive integer. Let $P(n)$ be the statement "move d_1 to r_3 to complete the Tower of Hanoi puzzle in $2^n - 1$ moves. We will prove $P(n)$ for all odd positive integers (that is, we are proving $P(n)$ for any odd number of disks).

Let us begin by first verifying the base case $n = 1$. There is only one disk, d_1 . Simply move it to r_3 . This completes the puzzle in one move. Also, $2^1 - 1 = 1$. Thus, $P(1)$ holds.

Let n be an positive odd integer and suppose for all positive odd integers k between $1 \leq k \leq n$, $P(k)$ holds. We want to show $P(n+2)$ is true.

Begin by making a partition of the $k + 2$ disks. Treat d_1, d_2, \ldots, d_k as a single disk d and we have two other disks d_{k+1}, d_{k+2} . Now the problem reduces to moving three disks d_{k+2}, d_{k+1}, d to r_3 . By the induction hypothesis, the best first move for three disks is to move d to $r₃$. So we have the following,

- 1. Move d to r_3 . This will take $2^k 1$ moves.
- 2. Then move d_{k+1} to r_2 . This will take 1 move.
- 3. Then move d to r_2 . This will take $2^k 1$ moves.
- 4. Then move d_{k+2} to r_3 . This will take 1 move.
- 5. Then move d to r_1 . This will take $2^k 1$ moves.
- 6. Then move d_{k+1} to r_3 . This will take 1 move.
- 7. Finally, move d_{k+1} to r_3 . This will take $2^k 1$ moves.

Thus, in total, we have

$$
2k - 1 + 1 + 2k - 1 + 1 + 2k - 1 + 1 + 2k - 1 = 4(2k - 1) + 3
$$

= 2² · 2^k - 4 + 3
= 2^{k+2} - 1

This proves $P(n+2)$.

Therefore, by complete induction, the best first move when an odd number of disks are present is to move the smallest disk to the destination rod. \Box *Proof (Even).* Let n be an even positive integer. Let $P(n)$ be the statement "move d_1 to r_2 to complete the Tower of Hanoi puzzle in $2^n - 1$ moves. We will prove $P(n)$ for all even positive integers (that is, we are proving $P(n)$ for any even number of disks).

Let us begin by first verifying the base case $n = 2$. There are only two disks, d_1, d_2 . First move d_1 to r_2 . Then move d_2 to r_3 . Finally, move d_1 to r_3 . This completes the puzzle in three moves. Also, $2^2 - 1 = 3$. Thus, $P(2)$ holds.

Let n be an positive even integer and suppose for all positive even integers k between $2 \leq k \leq n$, $P(k)$ holds. We want to show $P(n+2)$ is true.

Begin by making a partition of the $k+2$ disks. Treat $d_1, d_2, \ldots, d_k, d_{k+1}$ as a single disk d and we have one other disk d_{k+2} . Now the problem reduces to moving two disks d_{k+2} , d to r_3 . By the induction hypothesis, the best first move for 2 disks is to move d to r_2 . So we have the following,

- 1. By the induction hypothesis, move d to r_2 . This will take $2^{k+1} 1$ moves.
- 2. Then move d_{k+2} to r_3 . This will take 1 move.
- 3. Finally, move d to r_3 . This will take $2^k 1$ moves.

Thus, in total, we have

$$
2^{k+1} - 1 + 1 + 2^{k+1} - 1 = 2(2^{k+1} - 1) + 1
$$

= $2^{k+2} - 1$

This proves $P(k + 2)$.

Therefore, by complete induction, the best first move when an even number of disks are present is to move the smallest disk to the middle rod. \Box