Proof. To prove f(R) = [—1, 3], we need to show f(R) C [-3,1] and [-3, 1] C f(R).
To show f(R) C [f%,%], pick y € f(R) and argue y € [f%,%] Since y € f(R), it follows that
y = f(z) = 757 for some z € R.

Recall, Va € R we have a? > 0. Hence, for any real number z, we have —(z+1)? <0 and (z—1)% > 0.

Combining the two inequalities and rearranging
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shows that y € [—1, 1]. Therefore, f(R) C [-1,1].

To show [—3, 3] C f(R), pick y € [—3, 1] and argue y € f(R) (which means that we need to find an
input = € R such that f(z) =y).

If y = 0 then pick z = 0 € R, and observe that f(z) = f(0) = 1%_0 = 0 = y which shows that y € f(R).

If y # 0 then pick z = # € Rsince y € [—3, 2]\{0}. Observe that
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which shows that y € f(R).
Overall we have that f(R) C [-1,1].
Therefore f(R) = [—3, 1], as required. O



