Proof. To prove $f(\mathbb{R}) = [-\frac{1}{2}, \frac{1}{2}]$, we need to show $f(\mathbb{R}) \subseteq [-\frac{1}{2}, \frac{1}{2}]$ and $[-\frac{1}{2}, \frac{1}{2}] \subseteq f(\mathbb{R})$. To show $f(\mathbb{R}) \subseteq [-\frac{1}{2}, \frac{1}{2}]$, pick $y \in f(\mathbb{R})$ and argue $y \in [-\frac{1}{2}, \frac{1}{2}]$. Since $y \in f(\mathbb{R})$, it follows that $y = f(x) = \frac{x}{1+x^2}$ for some $x \in \mathbb{R}$.

Recall, $\forall a \in \mathbb{R}$ we have $a^2 \ge 0$. Hence, for any real number x, we have $-(x+1)^2 \le 0$ and $(x-1)^2 \ge 0$. Combining the two inequalities and rearranging

$$-(x+1)^{2} \leq 0 \leq (x-1)^{2}$$

$$-(x^{2}+2x+1) \leq 0 \leq x^{2}-2x+1$$

$$-x^{2}-2x-1 \leq 0 \leq x^{2}-2x+1$$

$$-x^{2}-1 \leq 2x \leq x^{2}+1$$

$$-(x^{2}+1) \leq 2x \leq x^{2}+1$$

$$-1 \leq \frac{2x}{x^{2}+1} \leq 1$$

$$-\frac{1}{2} \leq \frac{x}{1+x^{2}} \leq \frac{1}{2}$$

$$-\frac{1}{2} \leq y \leq \frac{1}{2}$$
(since x²+1>0)

shows that $y \in [-\frac{1}{2}, \frac{1}{2}]$. Therefore, $f(\mathbb{R}) \subseteq [-\frac{1}{2}, \frac{1}{2}]$.

To show $\left[-\frac{1}{2}, \frac{1}{2}\right] \subseteq f(\mathbb{R})$, pick $y \in \left[-\frac{1}{2}, \frac{1}{2}\right]$ and argue $y \in f(\mathbb{R})$ (which means that we need to find an input $x \in \mathbb{R}$ such that f(x) = y).

If y = 0 then pick $x = 0 \in \mathbb{R}$, and observe that $f(x) = f(0) = \frac{0}{1+0} = 0 = y$ which shows that $y \in f(\mathbb{R})$. If $y \neq 0$ then pick $x = \frac{1+\sqrt{1-4y^2}}{2y} \in \mathbb{R}$ since $y \in [-\frac{1}{2}, \frac{1}{2}] \setminus \{0\}$. Observe that

$$\begin{split} f(x) &= f\left(\frac{1+\sqrt{1-4y^2}}{2y}\right) \\ &= \frac{\frac{1+\sqrt{1-4y^2}}{2y}}{1+\left(\frac{1+\sqrt{1-4y^2}}{2y}\right)^2} \\ &= \frac{\frac{1+\sqrt{1-4y^2}}{2y}}{\frac{4y^2+\left(1+\sqrt{1-4y^2}\right)^2}{4y^2}} \\ &= \frac{1+\sqrt{1-4y^2}}{2y} \cdot \left(\frac{4y^2}{4y^2+\left(1+\sqrt{1-4y^2}\right)^2}\right) \\ &= \frac{1+\sqrt{1-4y^2}}{2y} \cdot \left(\frac{4y^2}{4y^2+\left(1+\sqrt{1-4y^2}\right)^2}\right) \\ &= \frac{2y\left(1+\sqrt{1-4y^2}\right)}{2+2\sqrt{1-4y^2}} \\ &= \frac{2y\left(1+\sqrt{1-4y^2}\right)}{2\left(1+\sqrt{1-4y^2}\right)} \\ &= \frac{2y\left(1+\sqrt{$$

which shows that $y \in f(\mathbb{R})$. Overall we have that $f(\mathbb{R}) \subseteq [-\frac{1}{2}, \frac{1}{2}]$.

Therefore $f(\mathbb{R}) = [-\frac{1}{2}, \frac{1}{2}]$, as required.