Solution:

To find a vector equation for L_2 we need $\vec{d} = \vec{AB}$ (direction vector) and $P_0 = A$ (point on L_2).

 $\vec{d} = (1 - 1, 2 - 1, 3 - 1) = (0, 1, 2)$ and $P_0 = (1, 1, 1)$

Thus, L_2 has vector equation $\vec{r}(t) = (1, 1, 1) + t(0, 1, 2)$.

The point $P_1 = (1 + s, s, 0)$ represents a general point on L_1 . The point $P_2 = (1, 1 + t, 1 + 2t)$ represents a general point on L_2 . Next we find $\overrightarrow{P_1P_2}$ which is a general vector whose tail lies on L_1 and head on L_2 .

$$
\overrightarrow{P_1P_2} = (1 - (1 + s), (1 + t) - s, (1 + 2t) - 0) = (-s, 1 + t - s, 1 + 2t)
$$

The points on L_1 and L_2 that produce the minimum distance must satisfy $\overrightarrow{P_1P_2} \cdot \vec{d_1} = 0$ and $\overrightarrow{P_1P_2} \cdot \vec{d_2} =$ 0. This is because $\overrightarrow{P_1P_2}$ must be perpendicular to each line for shortest distance.

$$
\overrightarrow{P_1P_2} \cdot \overrightarrow{d_1} = 0
$$
\n
$$
(-s, 1+t-s, 1+2t) \cdot (1, 1, 0) = 0
$$
\n
$$
-s+1+t-s = 0
$$
\n
$$
-2s+t = -1
$$
\n
$$
(s, 1+t-s, 1+2t) \cdot (0, 1, 2) = 0
$$
\n
$$
1+t-s+2+4t = 0
$$
\n
$$
-s+5t = -3
$$

Now we solve the following augmented matrix

$$
\begin{pmatrix} -2 & 1 & -1 \ -1 & 5 & -3 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & \frac{2}{9} \\ 0 & 1 & -\frac{5}{9} \end{pmatrix}
$$

Thus, $s = \frac{2}{9}$ and $t = -\frac{5}{9}$. Now substitute $s = \frac{2}{9}$ and $t = -\frac{5}{9}$ into L_1 and L_2 to find the required points.

$$
L_1: \vec{p}\left(\frac{2}{9}\right) = (1,0,0) + \frac{2}{9}(1,1,0) = \left(\frac{11}{9}, \frac{2}{9}, 0\right)
$$

$$
L_2: \vec{r}\left(-\frac{5}{9}\right) = (1,1,1) - \frac{5}{9}(0,1,2) = \left(1, \frac{4}{9}, -\frac{1}{9}\right)
$$

Therefore, $P_1 = \left(\frac{11}{9}, \frac{2}{9}, 0\right)$ and $P_2 = \left(1, \frac{4}{9}, -\frac{1}{9}\right)$ are the points on L_1 and L_2 , respectively, that are closest to together.

Extra: The shortest distance between the two lines is given by $\|\overrightarrow{P_1P_2}\|$.

$$
\overrightarrow{P_1P_2} = \left(1 - \frac{11}{9}, \frac{4}{9} - \frac{2}{9}, -\frac{1}{9} - 0\right) = \left(-\frac{2}{9}, \frac{2}{9}, -\frac{1}{9}\right)
$$

$$
\|\overrightarrow{P_1P_2}\| = \sqrt{\left(-\frac{2}{9}\right)^2 + \left(\frac{2}{9}\right)^2 + \left(-\frac{1}{9}\right)^2} = \frac{1}{3}
$$

Therefore, the shortest distance between L_1 and L_2 is $\frac{1}{3}$.