
Problem 2: Ellipse Twins

Part A

To find a Cartesian equation for E2, we will first convert E1 to polar form. Then apply the clockwise
π
4 transformation to it. Then convert it back to Cartesian form.

E1 is defined to be x2 + xy + y2 = 1. To convert E1 to polar, we will use y = r sin θ and x = r cos θ.
Substituting these into E1 and simplifying:

(r cos θ)2 + (r cos θ)(r sin θ) + (r sin θ)2 = 1

=⇒ r2 cos2 θ + r2 cos θ sin θ + r2 sin2 θ = 1

=⇒ r2(cos2 θ + sin2 θ + cos θ sin θ) = 1

=⇒ r2(1 + cos θ sin θ) = 1 (since cos2 θ + sin2 θ = 1)

=⇒ r2
(

1 +
sin(2θ)

2

)
= 1 (since cos θ sin θ =

sin(2θ)

2
)

=⇒ r2 =
2

2 + sin(2θ)

Now that we have E1 in polar form, we can apply the clockwise π
4 transformation:

r2 =
2

2 + sin(2(θ + π
4 ))

This is E2. Now we just convert it to Cartesian form using r2 = x2 + y2, y = r sin θ, and x = r cos θ :

r2 =
2

2 + sin(2θ + π
2 )

=⇒ r2 =
2

2 + cos(2θ)
(since sin

(
x+

π

2

)
= cos(x))

=⇒ r2(2 + cos(2θ)) = 2

=⇒ r2(2 + cos2 θ − sin2 θ) = 2 (since cos(2x) = cos2 x− sin2 x)

=⇒ 2r2 + r2 cos2 θ − r2 sin2 θ = 2

=⇒ 2(x2 + y2) + x2 − y2 = 2

=⇒ 3x2 + y2 = 2

Thus, the Cartesian equation of E2 is 3x2 + y2 = 2 as required.

Part B

Now to find P and Q, we will make use of the polar equations of E1 and E2.
Recall the following:

E1 : r2 =
2

2 + sin(2θ)
, E2 : r2 =

2

2 + sin(2θ + π
2 )
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Let us equate them to find P and Q as follows,

2

2 + sin(2θ)
=

2

2 + sin(2θ + π
2 )

2(2 + cos(2θ)) = 2(2 + sin(2θ)) (since sin
(
x+

π

2

)
= cos(x))

cos(2θ) = sin(2θ)

tan(2θ) = 1

2θ =
π

4
+ πk, k ∈ Z

θ =
π

8
+
π

2
k, k ∈ Z

If θ ∈ [0, 2π], then

θ =
π

8
,

5π

8
,

9π

8
,

13π

8

Since P and Q are in the first and second quadrants, the angle for P will correspond to θ = π
8 and

angle for Q will correspond to θ = 5π
8 . To get the Cartesian coordinates, we first find the polar

coordinates by finding the value of r for each angle. We can use the polar form of either E1 or E2:
For θ = π

8 ,

r2 =
2

2 + sin(2(π8 ))
=⇒ r =

√
8− 2

√
2

7

For θ = 5π
8 ,

r2 =
2

2 + sin(2( 5π
8 ))

=⇒ r =

√
8 + 2

√
2

7

So the polar coordinates of P are

(√
8−2
√
2

7 , π8

)
and the polar coordinates of Q are

(√
8+2
√
2

7 , 5π8

)
.

Now all we need to do is convert

(√
8−2
√
2

7 , π8

)
and

(√
8+2
√
2

7 , 5π8

)
to Cartesian coordinates using

(x, y) = (r cos θ, r sin θ).√8− 2
√

2

7
,
π

8

→
√8− 2

√
2

7
cos
(π

8

)
,

√
8− 2

√
2

7
sin
(π

8

)
√8 + 2

√
2

7
,

5π

8

→
√8 + 2

√
2

7
cos

(
5π

8

)
,

√
8 + 2

√
2

7
sin

(
5π

8

)
Thus, the Cartesian coordinates of P are

(√
8−2
√
2

7 cos
(
π
8

)
,

√
8−2
√
2

7 sin
(
π
8

))
and the Cartesian

coordinates of Q are

(√
8+2
√
2

7 cos
(
5π
8

)
,

√
8+2
√
2

7 sin
(
5π
8

))
as required.

Part C

We already found the polar coordinates of P and Q in the previous part. The polar coordinates of P

are

(√
8−2
√
2

7 , π8

)
and the polar coordinates of Q are

(√
8+2
√
2

7 , 5π8

)
.
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Part D

There are many reasons why using polar integration with ”outer minus inner” is easier for this problem
than using ordinary integration with ”top minus bottom”. First, and most obvious reason is that
solving E1 explicitly for y in terms of x (or x in terms of y) is not a straight forward task. Even
after writing both E1 and E2 as explicit functions of one variable, you will see that it takes multiple
functions to represent the curves. This makes things much harder when deciding which piece(s) to
use in the integral. Furthermore, even after completing that task and setting up the correct integral,
you will notice that the bounds are super messy! If you are integrating with respect to x, then the

lower bound will be x =

√
8+2
√
2

7 cos
(
5π
8

)
and the upper bound will be x =

√
8−2
√
2

7 cos
(
π
8

)
.

Now if we use polar integration, then the bounds will be fairly simple. The lower bound will be θ = π
8

and the upper bound will be θ = 5π
8 . Furthermore, the integral requires r2 which we already have

both curves solved for.

Now let us actually set up the integral for the required region and solve it. Recall that the area
bounded by two polar curves is given by:

A =

∫ θ2

θ1

1

2

(
r21 − r22

)
dθ

where r1 is the ”outer” curve and r2 is the ”inner” curve.

The following diagram focuses on the desired area and it is clear that the ”outer” curve is E2 and
the ”inner” curve is E1. This also confirms the lower bound to be θ1 = π

8 and the upper bound to be
θ2 = 5π

8 .

Using E1 : r2 = 2
2+sin(2θ) and E2 : r2 = 2

2+sin(2θ+π
2 )

, the integral representing the desired area between

P and Q is

A =

∫ 5π
8

π
8

1

2

(
2

2 + sin
(
2θ + π

2

) − 2

2 + sin(2θ)

)
dθ

=

∫ 5π
8

π
8

1

2 + cos(2θ)
dθ −

∫ 5π
8

π
8

1

2 + sin(2θ)
dθ (since sin

(
x+

π

2

)
= cos(x))
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Now let us compute the following two integrals separately

A1 =

∫ 5π
8

π
8

1

2 + cos(2θ)
dθ, A2 =

∫ 5π
8

π
8

1

2 + sin(2θ)
dθ

Computing A1:

A1 =

∫ 5π
8

π
8

1

2 + cos(2θ)
dθ

=

∫ 5π
8

π
8

1

2 +
(

1−tan2 θ
1+tan2 θ

)dθ (since cos(2x) =
1− tan2 θ

1 + tan2 θ
)

=

∫ 5π
8

π
8

1 + tan2(θ)

3 + tan2(θ)
dθ

=

∫ 5π
8

π
8

sec2(θ)

3 + tan2(θ)
dθ (since sec2(x) = 1 + tan2(x))

=

∫ tan( 5π
8 )

tan(π
8 )

1

3 + u2
du (let u = tan θ, du = sec2 θdθ)

=

[
1√
3

arctan

(
u√
3

)]tan( 5π
8 )

tan(π
8 )

=

[
1√
3

arctan

(
tan θ√

3

)] 5π
8

π
8

(returning to variable θ since u = tan θ)

now we take into account the singularity at θ = π
2 for u = tan θ,

=⇒
[

1√
3

arctan

(
tan θ√

3

)]π
2

π
8

+

[
1√
3

arctan

(
tan θ√

3

)] 5π
8

π
2

= lim
b→π

2
−

[
1√
3

arctan

(
tan θ√

3

)]b
π
8

+ lim
b→π

2
+

[
1√
3

arctan

(
tan θ√

3

)] 5π
8

b

=

(
π

2
√

3
− 1√

3
arctan

(
tan(π8 )
√

3

))
+

(
1√
3

arctan

(
tan( 5π

8 )
√

3

)
−
(
− π

2
√

3

))
=

π√
3

+
1√
3

arctan

(
tan( 5π

8 )
√

3

)
− 1√

3
arctan

(
tan(π8 )
√

3

)
=
π − arctan(

√
6)√

3
(used Wolfram Alpha to simplify)

≈ 1.1307

Computing A2:

A2 =

∫ 5π
8

π
8

1

2 + sin(2θ)
dθ

=
1

2

∫ 5π
4

π
4

1

2 + sin(x)
dx (let x = 2θ, dx = 2dθ)
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Now use Weierstrass substitution. Let t = tan
(
x
2

)
, sin(x) = 2t

1+t2 , dx = 2
1+t2 dt,

=⇒ 1

2

∫ tan( 5π
8 )

tan(π
8 )

1

2 +
(

2t
1+t2

) ( 2

1 + t2
dt

)

=

∫ tan( 5π
8 )

tan(π
8 )

1

2 + 2t2 + 2t
dt

=
1

2

∫ tan( 5π
8 )

tan(π
8 )

1

t2 + t+ 1
dt

=
1

2

∫ tan( 5π
8 )

tan(π
8 )

1

(t+ 1
2 )2 + 3

4

dt (completed the square)

=
2

3

∫ tan( 5π
8 )

tan(π
8 )

1

( 2√
3
t+

√
3
3 )2 + 1

dt

=

√
3

3

∫ 2√
3
tan( 5π

8 )+
√

3
3

2√
3
tan(π

8 )+
√

3
3

1

v2 + 1
dv (let v =

2√
3
t+

√
3

3
, dv =

2√
3
dt)

=

√
3

3
[arctan(v)]

2√
3
tan( 5π

8 )+
√

3
3

2√
3
tan(π

8 )+
√

3
3

=

√
3

3

[
arctan

(
2√
3
t+

√
3

3

)]tan( 5π
8 )

tan(π
8 )

=

√
3

3

[
arctan

(
2√
3

tan
(x

2

)
+

√
3

3

)] 5π
4

π
4

=

√
3

3

[
arctan

(
2√
3

tan(θ) +

√
3

3

)] 5π
8

π
8

once again, we need to take into account the singularity at x = π for t = tan
(
x
2

)
,

=⇒
√

3

3

[
arctan

(
2√
3

tan(θ) +

√
3

3

)]π
2

π
8

+

√
3

3

[
arctan

(
2√
3

tan(θ) +

√
3

3

)] 5π
8

π
2

= lim
b→π

2
−

√
3

3

[
arctan

(
2√
3

tan(θ) +

√
3

3

)]b
π
8

+ lim
b→π

2
+

√
3

3

[
arctan

(
2√
3

tan(θ) +

√
3

3

)] 5π
8

b

=

√
3

3

(
π

2
− arctan

(
2√
3

tan
(π

8

)
+

√
3

3

))
+

√
3

3

(
arctan

(
2√
3

tan

(
5π

8

)
+

√
3

3

)
−
(
−π

2

))

=

√
3

3
π +

√
3

3
arctan

(
2√
3

tan

(
5π

8

)
+

√
3

3

)
−
√

3

3
arctan

(
2√
3

tan
(π

8

)
+

√
3

3

)

=
arctan(

√
6)√

3
(used Wolfram Alpha to simplify)

≈ 0.68312
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Overall, we have

A = A1 −A2

=
π − arctan(

√
6)√

3
− arctan(

√
6)√

3

=
π − 2 arctan(

√
6)√

3

≈ 0.44756

Thus, the area of the region outside of E1 and inside of E2 is π−2 arctan(
√
6)√

3
.

Extra

To check our work we can calculate the area using Cartesian integration. Let’s set up the integral
with respect to x using the following diagram:

The red curve is E2 and the blue curve is E1. We also found the Cartesian coordinates of P and Q
in Part B so we can use their x-coordinates as the bounds of our integral. Last thing we require is to
have the equations of both E1 and E2 solved for y in terms of x.

E1: To solve for y in x2 + xy + y2 = 1, we use the quadratic formula and treat the equation as a
quadratic in y:

=⇒ y2 + (x)y + (x2 − 1) = 0

y =
−x±

√
4− 3x2

2

E2: To solve for y in 3x2 + y2 = 2, simply isolate for it:

=⇒ y = ±
√

2− 3x2

As we can see, both E1 and E2 have two functions representing them. In our integral, we need the
positive pieces.

11



We can now set up the integral for the desired area very easily using this diagram:

On our interval, between the points Q and P , E2 is always the ”upper” curve represented by f(x) =√
2− 3x2 and E1 is the lower curve represented by g(x) = −x+

√
4−3x2

2 . The lower bound is x =√
8+2
√
2

7 cos( 5π
8 ) and the upper bound is x =

√
8−2
√
2

7 cos(π8 ).

So the area of the desired region is:

A =

∫ √
8−2
√

2
7 cos(π

8 )√
8+2
√

2
7 cos( 5π

8 )

(√
2− 3x2 − −x+

√
4− 3x2

2

)
dx

Using a graphing calculator to evaluate the integral, we see that we get the same answer that we got
above using polar integration:
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