Problem2: SPACEVOYAGER3021
Part A

The error in Boppo’s reasoning occurs when he tires to find the surface area. He should be adding
the tangent vectors instead of subtracting them! He wants the total surface area not the difference of
surface areas between the two surfaces.

Now the reason we subtract the two functions in the integrand for volume is because we can get the
desired bounded volume by finding the volume under the larger surface and subtracting from it the
volume under the smaller surface. This idea does not apply when we are trying to find the total
surface area. We should simply find the surface area of each surface and add the results.

Part B

The space voyager is the solid bounded between the surfaces z = f(z,y) = 1 — |Jc2 — y| and z =
g(z,y) = 2. To find the volume of the space voyager, we first need to find the domain of integration
E. To find F, we need the curve(s) of intersection that will bound E. Thus, we solve

f(z,y) = g(z,y)
1-— ‘mQ —y‘ =22

17x2:|x27y|

We now have two cases,

1—22 =22—y (1)
1—2? =y—22 (2)

i) solving (1)

l—2"=2"—y
14y =222
y=2x>—1

i) solving (2)
1—a2?=y—2a?
y=1

So the boundary of E is given by the curves y = 222 — 1 and y = 1. The region F is shown below,

E] \41,5 [ o5 1

Figure 2: The region F




Now E can be described as both a Type I and Type II region,

E={-1<z<1,2:>-1<y<1} (Typel)

E = {—q/%(y—i—l)gmﬁ \/%(y—kl), —1§y§1} (Type II)

but describing it as a Type I region might make the computations easier.

Also note that over E, f(z,y) > g(z,y) and that the desired volume is symmetric with respect to the
plane x = 0:

25

thus we can integrate over D = {0 < x < 1, 222 — 1 < y < 1} and multiply the result by 2.

Now the volume of the space voyager is represented by the following double integral:

V:2//Df(x,y)df4—2//Dg($’y)dA

=2// fla,y) — gla,y) dA
1D 1

:2/ / 1—|x2—y|—x2dydax
0 222-1

To evaluate this integral we need to consider cases that depend on the sign of 2% — y.

Yy—x if y > 22

Let us add this information to our region D and split the region into cases in order to evaluate the
double integral.



Figure 3: The region D

We need to split D depending on whether y < 22 or y > . Thus,

D =DiUD,y
={0<2<1,22° - 1<y<2?u{0<z<1,2°<y<1}

where both D; and D5 are Type I regions.

Finally, we can work on the integral:

sz//Df(:v,y)—g(m,y)dA

11
=2 //1—(x2—y)—x2dydx+//1—(y—x2)—m2dydx
0

0 2z2-1
1
2/
0

2
We can evaluate these integrals separately.

2

x

11
1—2x2+ydydx+2//1—ydydx
0

2x2—1 z2



i) Evaluating the first integral:

1 z2
2/ / 1—222 +ydyde =2

0 2z2—1

9 1
= 535—383-1-4
3 0
ii) Evaluating the second integral:
11 1 L
2//1—ydydx:2/{y—2y2] dx
0 2 0 @?
h 1 1
2/{1 <x2x4>} dx
2
0
h 1
:2/§x4—x2+§dx
0
1
1 1 1
T e B
[1037 3" +240
_ 8
15

Overall we have,

v:z//Df(x,y)—g(xay)dA

11
:2/ / 172I2+ydydz+2//1fydydx
0 222—1 0
8 8
1
16

15

x2

Therefore, the volume of the space voyager is exactly % units>.



Part C

Now let’s find the surface area of the space voyager. This will be the sum of the surface areas of
f(z,y) and g(z,y) over E. Again we can use symmetry and integrate over D. Thus we can write,

o e () () e e () ()
e ) (5 o e () ()

Let us now find the first order partial derivatives of f(z,y) and g(z,y).

i) Partial derivatives of f(x,y)

0 0
1 2 _ 2
8:61 ox (@2 )
1
=0- 2222 — ) -2
SN T (z° —y)
_ 22(2* —y)
|22 — yl

0 o)
— 999 )2
oy oy V@Y
1
=0- 2z —y) - —1
2y/ (2% —y)? v
_ oy
|22 —y|
ii) Partial derivatives of g(z,y)
0
ga(w,y) = 5"
=2z
gy(@,y) = 5o
=0



So now we have,
N ARCROSEOROR
_2// \/1+ |))2+(|‘Z—z|>2+ 1+ (22) + (0)%dA

2 2 _ 2 _ 2
fQ// \/1+4xm2$ yQ) +(x2_‘Z;2+\/1+4x2dA

(z

:2/ V24422 + /14 422 dA
D

:4//\/1+x2dA+4//1/1+x2dA
p V2 p V4
/1
11:4// *+(E2dA
D 2
/1
12:4// *—|—£I,‘2dA
p V4

Let’s evaluate each integral separately over D = {0 <z < 1,222 —1 <y < 1}.

Let

and

i) Evaluating I; over D:

11—4//\/7—|—x2d14—4 / \/f—i—xQdydx

0 2z2-1

Let’s evaluate these two integrals separately. Let

1
1
A1:8/\/§+x2daj
0
1
5 /1
Ay =8 [z §+$2dl‘
0
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and



For both these integrals we will do a trigonometric substitution with tangent.

1 1
Let # = — tan 6, dv = — sec? 0df then 6; = 0, 6, = arctan(v/2
7 7% 1 5 (V2)

Evaluating A;:

1 arctan(v/2) 5
1
A 78/ 7+x2d178 / tan9> ——sec?0do
1 \/ NG

0

arctan

/ V' 1+ tan? 0 sec? 0 db

arctan(v/2)

=4 / sec® 0db

0
arctan(v/2)

1
4 [2 (secftanf + In|secd + tan0|)}

:2[\/6+1n(\@+\/§)

0

Notes:
Used the tangent substitution mentioned
Factored and simplified

Used the antiderivative of sec® #. The work for it is shown at the end of the problem.

(1)
(2)
(3) Used 1+ tan? g = sec? § and the fact that sec6 > 0 on 6 € [0, arctan (v/2)]
(4)
(5)

Used WolframAlpha to simplify

Evaluating As:

arctan V2)

8/ +z2d 8 ( 1 ta 0)2 1+< 1 ta 0)2 L sec? 0do
= \/ x2dx = — tan — — tan —
) V2 2 \V2 V2

arctan(v/2)
=2 / tan? 0v/'1 + tan2 0 sec® 0 do
0
arctan(v/2)
=2 / tan? 0 sec® 0 df
0
arctan(v/2)
=2 / sec® § — sec? 0 db
0
In|tanf +secl| sec3@tanf  secftand
8 4 8 0
3
= [—1n(\f+f)+f—?]

=1 [V -m(v2+v3)]

yM»—'

11

arctan(v/2)



Notes:

) Used the tangent substitution mentioned

) Factored and simplified

) Used 1+ tan? # = sec? § and the fact that sec > 0 on 6 € [O, arctan (\/5)]

) Used the antiderivative of sec® § and sec® §. The work for it is shown at the end of the
problem.

(5) Used WolframAlpha to simplify

(1
(2
(3
(4

Overall we have,

I =A — A
4//Dwé+:csz—8o/1\/+x2dx—80/1x2\/;+w2d:c
=2[VE+ (V2 +V3) - ] [5v6 ~ In(v3 + V3]
%[\/6‘+31n (\/§+\/§>}

ii) Similarly, evaluating I over D:

11
12:4//\/1+x2dA:4/ / \/f—i—xzdydx
D 4
0

2x2—-1

1
vg+ﬁy

2r2—-1

1 1

\/4+x2\/4+x2(2x21)] dx
1 1

4/2\/1+x2—2x2\/1+x2da@

0

1

1
1 1
:8/1/i+x2d:§—8/x2\/1+m2da:
0 0

Let’s evaluate these two integrals separately. Let

I
>~

dx

I
=

LSS O —

1

1
B1:8/\/Z+x2d3§

0

1
1
B2:8/$2\/1+$2d$
0

For both these integrals we will do a trigonometric substitution with tangent.

and

1 1
Let x = 5 tan@, dor = 3 sec’ 0 df then 0, = 0, f = arctan(2)
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Evaluating Bi:

arctan(2)
1
Bl—8/1/7+$2dx—8 / “Z tan6‘ fsec 20do

arctan(2)

/ V' 1+ tan? 0 sec? 0 db

arctan(2)
=2 / sec® 0 df
0

1
=9 [2 (secOtan + In |sec§ + tan9|)}

- [2\/5—1—111(24-\/5) +(0— 0)}
=25 +1In(2 + V5)

0

Notes:
Used the tangent substitution mentioned
Factored and simplified

arctan(2)

Used the antiderivative of sec? §. The work for it is shown at the end of the problem.

(1)
(2)
(3) Used 1+ tan? f = sec? § and the fact that sec > 0 on 6 € [0, arctan (2)]
(4)
(5)

Used WolframAlpha to simplify

Evaluating Bs:

arctan(2)

L 2 2
1 1 1 1 1
— 2 —_ 2 frng e — — — 2
By 8/:51/4—1—:1: drx =38 / (2tan9) 4+(2tan9> 5 Sec 0do
0 0

arctan(2)

1
5 / tan? 0/ 1 + tan? 0 sec? 0 df

0

arctan(2)
1
=3 / tan? 0 sec® 0 do
0

arctan(2)
= % / sec® 6 — sec® 0 db
0

_ 1] Injtand +secf| +sec‘°’9tan9_sec€tan9
2 8 4 8
I 5\/ V5

% [18v5—In(2+ \/5)}
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|

arctan(2)

0



Notes:

) Used the tangent substitution mentioned

) Factored and simplified

) Used 1+ tan?# = sec? # and the fact that sec > 0 on 6 € [0, arctan (2)]

) Used the antiderivative of sec® § and sec® §. The work for it is shown at the end of the
problem.

(5) Used WolframAlpha to simplify

(1
(2
(3
(4

Overall we have,

[ \/?dA—S/\/?dx— mdx

=2V +In(2 + V5) — — [18\/5 ~In(2+V5)]
== (14\f+171n(2+f))

Finally, we have

:4// \/quH// \/qu
{f+31n<f+f)}+—(14f+171n(2+f))

= (14\/5 +12V6 + 36 In(v2 + V3) + 17In(2 + V)
~ 7.9065

Therefore, the exact surface area of the space voyager is
1
¥ (14V5 +12v6 + 36 (V2 + V3) + 17In(2 + V5) ) units?

which is approximately 7.9065units?.
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Here is the work for the integrals of sec® § and sec® 0. Let I; = f sec3 0 df and let Ir = f sec® 0 df.

i) Evaluate I;:
/sec39d9 = /sec@ -sec? 0do

Use Integration by Parts with
u=sech, dv =sec?0df, v =tan6, du = secd tan 6 df

Now we have,

/sec30d0 =secHtanf — /tan&sec&tanQdG
=secHtanf — /tan2 Osecfdo
=secHtanf — /(sec2 6 —1)sectdd
=secftanf — /se030 —secfdd

Notice that we have I; appearing on both sides of the integral equation:
/sec3 0 df = sechtanf — /86030d0 + /sec@d@
I, =secOtanf — I; + /Se09d9
Thus, solving for I; gives:
I; =secOtanf — I; + /sec@d&

21, =secOtanf + /sec9d0
1
I = 3 (secﬁtan@ + /Se(;HdH)
Now substituting [ secdf = In[sec§ + tan 6| (this is a standard result) gives
3 1
I = [ sec’ = 3 (secBtan 6 + In|sec § + tan 6)|)

ii) Similarly, evaluate Io:

/ sec® 0 df = /sec3 0 sec? 6 db
Use Integration by Parts with

u=sec® 0, dv =sec?0df, v =tan6, du = 3sec? O secftan b df
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Now we have,
/ sec® 0 df = sec®ftanf — 3 / tan @ sec? @ sec 6 tan 0 df
= sec® ftanf — 3/tan2 6 sec 0 df
= sec® ftanf — ?)/(sec2 0 — 1) sec® 0 do
= sec® ftanf — 3/sec5 0 — sec® 0 do
Notice that we have I, appearing on both sides of the integral equation:
/sec50d9 =sec® ftanf — 3/Sec50d9 + 3/56039d9
I, =sec®Otan 6 — 315 + 3/sec3t9d9
Thus, solving for Iy gives:
I, = sec®ftan 6 — 31, + 3/sec30d9
415 = sec® ftanf + 3 / sec® 0 do
I, = i (SGCS ftanf + 3 / sec® 0 d@)

Now substituting [ sec®df = 1 (sec6 tan + In |sec 6 + tan §|) (this is I1) gives

5 1 1
I, = /sec"@ =1 <se030tan9+3 <2 (sec@tan0+ln|se(:0+tan0)))

sec3ftan® 3secOtan6  3lnlsecd + tan 6|
4 + 8 3

Note that the integrals we computed for Part C used

I = /86639d9 _ sec€2tan9 n ln|sec92—|— tan 6|

and
13:12711:/sec59def/sec30da

_sec’ftan®  3secOtanf = 3In|secd + tan 0| secd tan 6 n In |secf + tan 0|

4 + 8 8 2 2
sec3@tan®  3secOtanf 3In|sech +tand| secOtand In|secd + tan 6|
J— + — —
4 8 8 2 2
_Infsec + tan6)| sec? § tan 0 _ secftand
B 8 4 8
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